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Abstract

This note describes two novel semi-implicit schemes, intended primarily for application to

forward-trajectory semi-Lagrangian models. The explicit components of the algorithms are

significantly more accurate than the commonly used leapfrog method and are based on low-

storage versions of the third- and fourth-order Runge-Kutta technique. The fast modes only are

adjusted at each of the stages of the Runge-Kutta cycle using a slightly dissipative method that

generalizes the trapezoidal implicit scheme either by first-order accurate de-centering involving

the two time levels straddling the active time interval, or by a second-order accurate exten-

sion involving also one earlier time level. These semi-implicit extensions should be reasonably

straight-forward to apply and, with appropriate choices of the schemes' de-centering parame-

ters, will lead to robustly stable methods applicable to both hydrostatic and nonhydrostatic

atmospheric models. In this part of the study we review some of the properties of the methods

in the idealized dynamical system consisting of a simple damped linear oscillator. This system

allows us to examine the robustness of different de-centering strategies to errors in the specifica-

tion of the modal frequencies. From these experiments it becomes apparent that a restriction to

de-centering strategies that preserve formal second-order temporal accuracy can never provide a

sufficient degree of robustness for those implicit modes that have low frequencies. Although, for

such modes, the unmodified explicit Runge-Kutta schemes would remain stable, we have found

no satisfactory way of relaxing or 'diluting' the implicit adjustments for these slower modes that

is capable of avoiding the inherent lack of robustness while preserving second-order accuracy.

Fortunately, the simpler first-order decentering strategy does-recover robustness throughout the

spectrum of implicit modes and retains this property when a dilution of the implicit adjust-

ments is carried out for the slowest of these modes so that the time integration of them can

be made to revert progressively towards the more accurate Runge-Kutta schemes. A sequel

to this article will describe the practical aspects of applying the proposed techniques to actual

nonlinear numerical models, where we can expect the semi-Lagrangian versions, unrestricted by

the usual advective CFL limit, to out-perform the leapfrog method in terms of accuracy while

offering opportunities for reducing the storage requirements and computational costs.

1. INTRODUCTION

In a semi-implicit Eulerian numerical model it is very difficult to find a basic time integration

scheme, for the explicit dynamical components, that is superior to the traditional time-filtered

leapfrog method. This is because the time step is dictated essentially by the advective Courant-

Friedrichs-Lewy (CFL) criterion of the particular integration scheme, and the leapfrog scheme's

CFL restriction is the most lenient of all the well-known integration methods. In a semi-

Lagrangian model, other factors determine how large a time step should be. For example,

a compromise is usually made between the insertion rate of physical or topographic forcing

sufficiently high to capture the physical processes accurately and the longer time step permitted

for a semi-Lagrangian model purely on the basis of numerical stability. Since the time steps of

a semi-Lagrangian model are normally significantly longer than those of a comparable Eulerian



model, it may be valid to pay greater attention to the minimization of time-trunction errors
in the semi-Lagrangian case, but the advective CFL condition certainly has no bearing on the
time step choice. In developing semi-Lagrangian models it is therefore reasonable to question
whether there are faster, or more accurate time stepping methods than the semi-implicit time-
filtered leapfrog method. This article will attempt to answer this question affirmatively and
provide two suitable schemes, based on semi-implicit adaptations of low-storage Runge-Kutta
methods.

We will begin the next section by reviewing relevant features of modern semi-Lagrangian
frameworks and some of the available families of time-integration methods, together with what
(if anything) these potentially applicable method have to offer in the context of the semi-
Lagrangian models. The time-filtered leapfrog method will be taken as the effective benchmark
scheme with regard to both accuracy and storage economy since, among the standard explicit
integration methods, it possesses the largest range of stability in the frequency domain for
the purely oscillatory modes that are of paramount importance in most geophysical flows. It
is essential that a robust semi-implicit form of any scheme should be demonstrated before
that scheme be deemed acceptable. Often one finds that there is a trade-off one can make
within the same family of schemes between storage economy and formal accuracy. In fact,
having narrowed down our recommended field of contenders, we find that this trade-off applies
between the two choices we finally offer: one is a third-order method actually requiring less
storage than the leapfrog, whose explicit form was proposed by Williamson (1980); the other
method, whose explicit form was proposed by Gill (1951), achieves fully fourth-order accuracy
(for the explicitly integrated components) but requires as much storage as the leapfrog. When
memory is available, it is the fourth-order method that we recommend, since the automatic
occurrence of a division of the principal time step into just two equal sub-intervals leads to
some valuable simplifications in practice.

Section 2 reviews the characteristics of some of the available time integration schemes to
provide the motivation for us to consider the low-storage Runge-Kutta methods. Section 3
describes the explicit methods of Williamson (1980) and Gill (1951), while the proposed semi-
implicit extensions of these two methods are defined and evaluated in Section 4. The concluding
section of this part of the study discusses the implication of these experiments for the choice of
scheme in a full nonlinear primitive equations model, whose detailed examination will be the
topic of Part II of this investigation.

2. INTEGRATION METHODS IN THE SEMI-LAGRANGIAN FRAMEWORK

The traditional approach to numerical weather prediction, employing the Eulerian equa-
tions, is gradually being superseded in most prediction centers by the potentially more efficient
semi-Lagrangian methods. Reintroduced in the early nineteen eighties by Robert (1981, 1982)
in combination with the semi-implicit method (e.g., Robert et al. 1972), and also adapted
by Bates and McDonald (1982) for split-explicit treatment of fast modes, the semi-Lagrangian
method, as mentioned earlier, offers the opportunity to achieve stable numerical integration
using timesteps unrestricted by the ordinary advective Courant-Friedrichs-Lewy (CFL) stabil-
ity criterion. It has been shown by Purser and Leslie (1988) that there are benefits to be
gained by adopting high-order spatial numerics in a semi-Lagrangian model. The so-called
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'cascade' method of grid-to-grid interpolation was proposed by Purser and Leslie (1991) as a

way to enhance the efficiency of the semi-Lagrangian interpolations needed at each time step

when high-order numerics are employed in the construction of the interpolation operators. The

cascade method reduces the three-dimensional interpolation problem to a sequence of three sep-

arate sets of one-dimensional grid-to-grid interpolations through a sequence of grids constructed

as hybrids between the Eulerian and Lagrangian coordinate frameworks.
One consequence of adopting the cascade method is that interpolation from forward trajec-

tories becomes virtually no more complicated than the more conventional interpolation from

Eulerian to Lagrangian coordinates used in most existing semi-Lagrangian models that employ

backward trajectories. The forward trajectory approach has the notable advantage of lending

itself naturally to the application of a much wider variety of time integration schemes, avoiding
the iterative adjustments of trajectory origins that so often characterize the backward trajec-

tories implementation of some time discretization methods. In particular, integration schemes

possessing a formal order of accuracy greater than the commonly adopted first- or second-order

methods can be considered for use within a forward-trajectory semi-Lagrangian model. This is

a way to guard against the possibility of significant time truncation errors that might occur as a

consequence of being able to run the model with time steps much larger than those typical of a

comparable Eulerian model. By using forward trajectories, essentially all the standard numeri-

cal time integration methods for ordinary differential equations (ODEs) are immediately made

available for application to the Lagrangian-frame dynamics of our numerical weather prediction

models.
There is at least some evidence from the studies of Purser and Leslie (1994, 1996) that

small, but nevertheless significant, benefits to forecast accuracy (as measured by root-mean-

square fits to a high resolution control forecast) result from the use of high-order integration

techniques in a semi-Lagrangian model. Durran (1999) has nicely summarized the important

distinguishing properties of several standard time integration methods (see his Tables 2.1 and

2.2, pp.68-69). It is normally impractical to use the leapfrog benchmark method in its pure

form, owing to the presence of an undamped computational mode for oscillatory dynamics

which becomes unstable in the presence of the smallest amount of dissipation. It is usual to

damp the computational mode by slightly modifying the pure second-order leapfrog by the

inclusion of a time filter (Robert 1966, Asselin 1972). Unfortunately, this formally reduces the

order of accuracy (and slightly reduces the range of stability). However, with the typically small

size of the adjustable smoothing parameter used in practice (the NCEP global model currently

uses -y = 0.04 in the notation of Haltiner and Williams 1980, or v = 0.08 in the notation of

Asselin 1972), the coefficient of first-order error is very small; in most respects, the modified

scheme therefore still behaves like a fully second-order method. The filtered leapfrog requires a

pair of auxiliary storage fields (making three fields in total when counting the dynamical state

variables themselves), which is considered a reasonable storage cost for an operational model.

As shown by Robert et al. (1972), the leapfrog method can be converted into a semi-implicit

scheme without great difficulty, assuring the method's continued utility for both Eulerian and

semi-Lagrangian numerical weather prediction models.

A perusal of Durran's tables of standard schemes suggests that few, if any, of the other

methods of second-order accuracy qualify for service in weather prediction models; only the

Magazenkov (1980) scheme, which alternates a leapfrog step with the Adams-Bashforth second-
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order method, and the Kurihara (1965) explicit leapfrog-trapezoidal schemes, are listed as being
stable for oscillatory modes. Both of these schemes have inferior stability ranges compared to the
leapfrog scheme once time step sizes are adjusted to equalize the computational costs associated
with the 'function evaluations' of state tendencies. Both schemes have storage requirements
identical to the those of the filtered-leapfrog benchmark. It does not seem that the slightly
improved accuracy of these schemes is sufficient to justify the effort and complexity involved in
forming semi-implicit forms of them that could potentially replace the semi-implicit time-filtered
leapfrog.

Turning to higher orders of accuracy, one finds that many of the classical numerical in-
tegration schemes require several additional auxiliary fields of storage. Clearly, such schemes
are much less attractive, especially when the additional fields incur not simply an extra stor-
age burden, but, by having to be saved and interpolated from one time level to the next in
a semi-Lagrangian model, also incur a significant additional computational burden. The vari-
ous families of high-order multistep methods, to which belong the Adams-Bashforth methods
(Gear 1971), fall into this unfortunate category. For example, the third-order Adams-Bashforth
method has excellent accuracy and moderately good stability characteristics and has been rec-
ommended for meteorological models largely for these reasons by Durran (1991). A semi-implicit
adaptation of this method was implemented in a semi-Lagrangian model by Purser and Leslie
(1994) with good results, judged by objective criteria and by the subjective interpreation of nu-
merous forecasts. However, the storage required by the third-order Adams-Bashforth method
totals four fields of data, which exceeds the requirements of the leapfrog benchmark. Simi-
larly, there are extensions to the Adams-Bashforth family that apply to the second-derivative
equations for Lagrangian trajectories, combining both the kinematic and momentum equations.
These schemes become the St6rmer (1907) schemes in the absence of a Coriolis parameter, but
the more general forms are referred to as 'Generalized Adams-Bashforth' schemes by Purser
and Leslie (1996). These schemes also require several auxiliary storage fields if a high-order of
accuracy is to be attained.

Another family of classical methods for integrating ODEs to higher orders of accuracy are the
'one-step', including Runge-Kutta methods (Gear 1971). In general, these methods also require
a number of auxiliary storage fields, although the intermediate fields of data are not passed on
from one cycle of time steps to the next. Attempts have been made to address the problem of
storage economy. Lorenz (1971) proposed a family of Runge-Kutta-like 'N-cycle' schemes in
which one is required to provide only a single auxiliary storage field to hold successive linear
combinations of present and previous tendencies of the state. The N individual time steps that
make up each cycle are of equal size in his schemes. For each N > 2, there exist two distinct
N-cycle schemes that achieve a formal accuracy of Nth-order when applied to problems in which
the tendencies are exactly linear functions of the state variables, whereupon, the methods N < 4
become equivalent to the corresponding Runge-Kutta schemes. These schemes are defined in
Appendix A.

It is instructive to compare the stability regimes of a few of the methods we have discussed
in the context of the simple differential equation,

dt- JOt, (2.1)dt
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which represents an oscillator when J is purely imaginary, and represents frictional damping

or diffusion when J is real and negative. A meteorological example whose description might

involve an equation of this kind is the dynamical behavior of inertial oscillation in the nocturnal

boundary layer (S. G. Gopalakrishnan, personal communication). Figure 1 shows the regions of

the complex space of J6t (bounded by the closed curves) where the filtered-leapfrog, the third-

order Adams-Bashforth scheme and the 4th-order Runge-Kutta (or Lorenz 4-cycle) schemes

remain stable, the Jt being the average time between function evaluations rather than a true

time step, in the case of the Runge-Kutta method. Appendix B describes how these curves are

obtained in general (and reminds the reader of the defining formula for the third-order Adams-

Bashforth method examined in Fig. 1). A reduction in the stable frequency range of these higher

order methods compared to the leapfrog is evidently compensated to some degree by their better

stability in dissipative situations. Figure 2 shows the stability regions achieved for all of the

N-cycle methods for the range N E [1, 5]. Up to fourth-order, these are equivalent to classical

Runge-Kutta stability regions. Although it is not always visually obvious unless the scale of

the real component is expanded, the stability curves of N = 1, 2 and 5 do not enclose a finite

stretch of the imaginary axis near the origin and are consequently unstable for even the slowest

oscillatory modes. When we consider the true Runge-Kutta methods below, we shall therefore

confine our consideration to third- and fourth-order schemes. An attempt to generalize Lorenz's

maximally storage-frugal method to the second-derivative momentum/kinematic equations of a

semi-Lagrangian model was given by Purser and Leslie (1997). However, all of the supposedly

higher-order N-cycle schemes are not fully Nth-order accurate for generic tendencies that are

nonlinear functions of the state variables. If we apply the two alternative forms of the Lorenz 4-

cycle (see Appendix A for their definitions) to the dynamics implied by a system of central force

law equations in which the force is not a linear function of radial distance, we obtain truncation

errors of phase that can be quite large compared to those obtained with the corresponding

classical Runge-Kutta scheme (also defined in Appendix A), even when the true 'orbits' are

perfectly circular and the magnitude of the true force is remaining constant. The celebrated

case of the inverse-square force law, although of no specifically meteorolgical interest, was coded

as a convenient test example because the general solutions (Kepler orbits) remain analytically

simple even when they are not circular. In this study, however, we only show the attempts

at simulating the circular orbit solutions with the above-mentioned three methods. Figure 3

compares these methods together with the 'true' solution obtained by integrating with very

short time steps. We observe that the phase errors of the two alternative N-cycle schemes are

approximately equal and opposite. Lorenz suggested alternating the two N-cycles in order to

achieve the full Nth-order of accuracy over groups of cycles, but the efficacy of this strategy in

a highly nonlinear numerical weather prediction model is extremely doubtful.

Lorenz imposes two restrictions: first, that time steps of each stage of the cycle are equal;

second, that only a single auxiliary storage field is provided for the intermediate computations.

Relaxing these restrictions enables fully Nth-order schemes, the proper Runge-Kutta family,

to be considered. Wicker and Skamarock (2001) have recently examined a third-order Runge-

Kutta scheme whose time step subdivisions are convenient for application to the slow modes

of the split-explicit Eulerian dynamical core of the fully compressible nonhydrostatic Weather

Research and Forecasting (WRF) model (see also Skamarock et al. 2001) and they report

encouraging results. We shall not consider methods of orders greater than four; even a glance
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at Fig. 2 strongly suggests that we should not expect a higher order explicit Runge-Kutta
scheme to produce an effective stability range for oscillatory modes better than that produced
by the fourth-order method and it can be shown rigorously (Butcher, 1965) that truly fifth-order
Runge-Kutta schemes require no less than six stages. Williamson (1980), extending earlier work
described by Kopal (1961), examined the problem of implementing low-storage Runge-Kutta
methods. From a continuously parameterized family of possible schemes requiring a total of
only two storage fields, one particular method, henceforth referred to here as the Williamson
method, was recommended. Note that the storage economy of such a method improves upon
that of the leapfrog scheme. Another, and perhaps better known low-storage Runge-Kutta
method is the fourth-order scheme devised by Gill (1951), which requires a total of three
storage fields. Because the minimization of storage requirements is always of critical concern in
a numerical weather simulation or prediction model, these members of the Runge-Kutta family
are of particular interest to us. We shall therefore devote the next sections to discussions of these
two explicit schemes, their application to semi-Lagrangian models and the further adaptations
to them that convert them to semi-implicit methods.

3. THE RUNGE-KUTTA METHODS OF WILLIAMSON AND GILL

The three-stage algorithm of Williamson (1980) and the four-stage algorithm of Gill (1951)
belong to the class of Runge-Kutta (RK) schemes (e.g., see Butcher 1987). The nice thing
about these schemes is that they achieve third- and fourth-order accuracy in time with only
quite modest memory requirements. In the case of the third-order Williamson scheme, only
two storage fields are needed while, in the case of Gill's scheme, three fields are needed. In each
case, one of these storage fields is reserved to hold the state variables themselves. The generic
form of an explicit Runge-Kutta method is explained in Appendix A. Table 1 summarizes the
Williamson algorithm adapted to the context of a semi-Lagrangian model capable of handling
the nonstandard case of forward trajectories. Provision is made in this summary for the inclu-
sion of adjustment increments (denoted adj-) which would be needed in a split-semi-implicit
modification of the scheme, although we defer discussion about the creation of suitable forms
for these terms until later; the explicit Williamson schemes result from setting all the terms
%ad- to zero. Williamson particularly recommends the scheme defined in Table 1 with the
coefficients:

1
Ro = 3, (3.1)

15
RI = 16' (3.2)

8R2 =- (3.3)
15'

Q1 = - 16' (3.4)
16'
17

Q2 25 (3.5)

25Other schemes of the same kind can be found by the methods described in Appendix A.
Other schemes of the same kind can be found by the methods described in Appendix A.
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Table 2 summarizes Gill's fourth-order algorithm, similarly modified to accommodate semi-

implicit terms. In this case, an additional storage field must now be provided for holding some

of the intermediate results. The two numerical constants, A and B, we use to define this version

of Gill's scheme are:

A = 2 - v2 0.5857864376269049512
B =1 + X 2.4142135623730950488

TABLE 1. SEMI-LAGRANGIAN FORM OF WILLIAMSON'S RK3 ALGORITHM

To/from Archive Stage Operation Field-1 Field-2

00 1 E0 = RoF(-p0 )6t 0o E0'

[0] = Po + E0 + }adjl[o] . o __

(V' ,]) = I[ 0](4[, E) 41 Eo 

2 E = Rl_.(4')tt + Q1 E[] El

0[11 =4 + E + a dji [1 2 X

(N,2, E 21) = [241,],.(.2 E1
i) v2 El 21

3 E2 = R2.F(4,2),t + Q2 E2] E2

[2] = V + E2 + ,di[2l. ('2] 

t+& 43 3 + = 2[3,2](([.]) . . . _

In tables 1 and 2, the state variables are represented collectively by 4, with ,0' denoting their

values on the Eulerian standard grid at stage a of the time step cycle. For variables identified

with stage a, but held on the Lagrangian trajectories that intersect the Eulerian standard grid

only at another stage, b, of the cycle, the notation ')b']' is used. The computed tendencies of 4'
at stage a are denoted by Fa and are always first estimated by the application of the nonlinear

'tendency operator' .F to state 4"a . The algorithms tabulated above assume the existence of

a procedure which can perform the interpolations between the Eulerian and Lagrangian grids

in the nonstandard direction - that is, from Lagrangian to Eulerian grids. This interpolation

operator, which is normally linear in the variables being interpolated, but can also be 'shape-

preserving', is here represented symbolically by [b*-a], where a denotes the stage at which the

Lagrangian source grid previously coincided with the standard Eulerian grid and b denotes the

stage of the time stepping cycle labelling the target Eulerian standard grid. In stages 2 and 4

of the Gill algorithm set out in Table 2 the time level is a repeat of the preceding time level, so

the interpolation operator involves only a very small set of relative displacements. This enables

the interpolation operator at these stages to be represented by a formal linearization about

zero displacement, a special instance we signify in this table by the notation, I~_al] In effect,

the advection at these stages reverts to an Eulerian treatment. The time stepping cycle itself

occupies a period of time Rt beginning at stage 0.
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TABLE 2. SEMI-LAGRANGIAN FORM OF GILL'S RK4 ALGORITHM

To/from Archive Stage Operation | Field-1 Field-2 Field-3 

-1+ 4= ° .ojI b) ' .. _F°

G1 E 0 G E0 ...Gpo] + E ° + o F . o] [ E°
_._._ .

(0b' C' 10o(koG31 "C[oI = 4" + E ° + badj o] ...

=0 - aE'ol 1

(O1, G1) = [ 1i_0]([], G 1]) G ..

.2 1F1 = 2F(o)bt 2 2

E = A(~F -G ) .E:22] +El + E 2 + "Pd i [2]
G[2 = F1 - AE1 G 2 ...

2 1 1 F 3t+,t/2 ~ V? (V?, G2) = z~,,._,](~,2], G[1]) ~2 G 
3 5F = (F-G2)5 t

E 2 = 2 +B(1F 2 -- G 2) E2

3 = 2 + E + adj] [3]
G[2 = F2 + B(E2 2_ i F2) . 3 ...

(V3, G3) = 1t3,-2]()[3], Gr.]) V)3 G 3 ...

4 sF3 = ½ F(03)6 t . F3

E3 = 51FF3-G3 E 3 ...

~[3] = ~3?+ E + ~d4i[ %1 ... ...

ot+bt V)4 p4 ()4 .)4
=E*4 3 zi~ (3,t]) .....

In Williamson's algorithm, stages 1 and 2 update the intermediate state to times t + c1Jt
and t + c25t, where, for the particular scheme recommended,

1
Cl = ,

3
C2 = -

4'

(3.6)

(3.7)

The final stage brings the solution up-to-date at t + Rt.
In the case of Gill's fourth-order algorithm, stages 1 and 2 are both identified with the

middle of the period, or 5t/2 from the beginning, while stages 3 and 4 are identified with the
end of the cycle, or Jt from the beginning. In the notation by which Runge-Kutta schemes are
defined in Appendix A, this scheme therefore has,

1
Cl = --

2'

8
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.~~~~~~~~~~~~

:~C2 = 2'(3.9)

c3 = 1. (3.10)

The final state of the cycle, 0i4, then becomes the initial state, b°0, of the following cycle.

Tables 1 and 2 make provision for the possibility of semi-implicit adjustments at each stage.

The following section offers suggestions about how this might be done.

4. SEMI-IMPLICIT TREATMENT

For oscillatory or dissipative systems, integration for time step, clJt, with Ft =YF(V(t))Jt

by the implicit scheme:

',(t + clit) = 0(t) + WoF(t) + WiF(t + ci.t), (4.1)

is normally stable when W1 > Wo, and W0 + W1 = cl, and achieves second-order accuracy when

Wo =W1 ci/2 (the 'trapezoidal method'). If we write,

(W, W 1) = cl (1 - a, 1 + a), (4.2)
2

where a is the first-order de-centering parameter, the second-order trapezoidal method corre-

sponds to a = 0, the Euler-backward method corresponds to a = 1, and other first-order implicit

methods correspond to intermediate choices of a. When three times levels, (t, t + clot, t + c26t),

are available, it is sometimes useful to generalize the implicit scheme so that the fast oscilla-

tory modes can be positively damped while remaining asymptotically accurate to second order.

This is accomplished by introducing an additional decentering parameter, b. Then, in the more

general scheme,

b(t + c25t) = b(t + clt) + WoF(t) +WiF(t + clt) + W2F(t + c26t), (4.3)

where,

(Wo, W1 , W2) - 2 cl (b b 1- ab, l + b ), (4.4) 
C2 C2 / 

a definite damping of the oscillatory modes occurs even when the first-order de-centering pa-

rameter a vanishes, provided the second-order de-centering parameter b is positive.

We propose to adopt such schemes for the implicitly treated components of a numerical

integration whose explicit modes are dealt with using either the Williamson or the Gill algo-

rithms described in the previous section. The de-centering parameters ensure a positive degree

of dissipation even for those modes which should really be neutrally stable; in this way, we

confer upon our schemes an inherent robustness that the trapezoidal scheme alone would not

possess. However, the second-order decentering (involving three time levels) is only convenient

to apply during the middle subdivision of Williamson's algorithm or during the second half of

Gill's algorithm, since it is only at these stages that we have convenient access to just the three

time levels that are needed, while still being able to extract from the auxiliary storage fields

the necessary tendency terms. A greater degree of robustness is obtained, at the expense of

incurring a first-order temporal error in the fast modes, by using a small positive de-centering
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parameter, a, in any or all of the stages of the modified Williamson or Gill schemes. Since
the de-centering parameters may differ in each of the stages, we shall employ the index of each
stage as a distinguishing subscript. The implicit tendencies must be estimated on the basis
of a suitable linearization about the latest explicitly available state; for example, in stage 1 of
either the Williamson or Gill algorithms, we might employ the approximation (dropping the
trajectory subscripts for clarity):

Y( 1 + ala dj)Jt "F ° + J*(bl + )' (4.5)

where J* denotes an approximation to the Jacobian operator J encoding the sensitivity, for the
fast modes, of F =_ .(b) t with respect to changes in b:

J* J, (4.6)
where

dF = JdV. (4.7)

We now introduce the proposed modifications to the Williamson and Gill algorithms that
make them semi-implicit, and investigate their properties in highly idealized dynamical systems
designed to reveal some aspects of these schemes' robustness to mis-specification of modal
frequencies.

(a) Semi-implicit modified Williamson scheme

We use the two-level semi-implicit treatment for stages 1 and 3 but the three-level form (i.e.,
with a b-parameter) for the middle stage. In principle, this should allow a fully second-order
implicit scheme (vanishing a-parameters) with a definite dampening of the fast modes, and
therefore, a built-in robustness to some extent. The adjustments at each of the three stages are
given by:

E°+ldj I - aF°+ 1+al [Fo+J*(Eo+±,do , (4.8)

El + badj = WEE' + WFF 1 + 4 (1 + a2 + ) F1 + J*(E + - adj)2 (4.9)adj 24 4 9)

E2 1a32 + 1+ad a3 [F2+J*(E2+ 3bd) (4.10)
adj8 8 L a dj)

where, since from Table 1 we have,

1 (-25FO + 45FP) (4.11)
48

the weights WE and WF become consistent with (4.4) if they are defined:

2b
WE - 9, (4.12)

WF 5(1 - a2) (4.13)WF 24(4.13)
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By manipulating these equations we can place only the Vbadj terms on the left-hand sides:

0Iadj (1- W J*)-lwolFO-E, (4.-14)

b : - (1 - W2 J*)l(WEl + W12Fl) - E, (4.15)
' atJ x. I
¢adj = (1 -W23 2

where the new set of weights are:

WI = 10 3'1
W 1l+al

6 '
2b

WE = 2b,

W12= 5 5b

W2 = (1 +a2+

W2 = _
41

-1 +a3
8

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)4b'\
9 J '

(4.22)

(4.23)

In the context of a complete model, the Jacobian operator J* becomes a matrix of spatial

partial derivative operators structured so that, with further manipulations, each adjustment

equation involves the solution of a Helmholtz equation. It is instructive to examine the stability

regions of schemes of this kind when applied to one of the simplest of dynamical systems, namely,

the linear damped oscillator equation, (2.1), for the case of a unit time step, 5t = 1. In this

case, the Jacobian J reduces simply to the complex frequency. We have at our disposal the four

de-centering parameters, al, a2, a3 and b. For each value of the assumed frequency J* we may

then plot the boundary of the region of complex J (the true complex frequency) for which this

particular semi-implicit modification of the Williamson method remains stable. Fig. 4 shows the

neutral stability curve in the complex J plane of an unmodified explicit third-order Runge-Kutta

scheme (such as Williamson's scheme) for reference (the dotted curve that is symmetric about

the real-axis) and the corresponding curves for a semi-implicit modification of Williamson's

scheme where all the a's and b vanish. The three representative values of the assumed frequency

are: J* = i, 3i, 5i, where i = V=. Note that this scheme exhibits essentially no robustness to

erroneous specification of the assumed frequencies, J*, since the curves of stability intersect

these assumed frequencies, bringing unstable regions of the imaginary frequency axis arbitrarily

close to the assumed values in each case. Fig. 5 shows the improved robustness obtained by

keeping the a coefficients zero but setting b = .5. However, the low-frequency implicit modes

(exemplified here by the curve for J* = i) still possess little margin for error, and the situation

is not much improved for these modes when we further double the parameter b (Fig. 6). When

we do not employ the second-order de-centering parameter (that is, we reset b = 0) but set all
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the a parameters to a = 0.5, then, as shown in Fig. 7, all the implicit modes become very robust
to mis-specification of their frequencies. In cases where we would be more comfortable having a
smaller coefficient of first-order time truncation even for these supposedly unimportant implicit
modes, the scheme with al = a2 = a3 = .2 and b =.5, shown in Fig. 8 might be preferable,
although the robustness of the slower implicit modes is noticeably reduced in comparison to
the scheme illustrated in Fig. 7 and, arguably, the value of having a non-vanishing b in this
case is marginal at best.

(b) Semi-implicit modified Gill scheme

In a manner resembling our treatment of Williamson's third-order Runge-Kutta scheme, we
may modify the Gill fourth-order Runge-Kutta algorithm to achieve numerical stability and
robustness for modes too fast to be handled by the explicit dynamics. However, in this case,

the successive stages do not all involve a positive progression of time; the result of stage 2 is
contemporary with that of stage 1, while the result of final stage 4 is contemporary with the
result of stage 3. The approach we adopt is to apply the two-level implicit scheme at stage 1;
attempt to keep the fast components unchanged at stage 2; apply the three-level implicit scheme
(should a positive b parameter be adopted) at stage 3; keep the fast components unchanged
again at stage 4. The three-level weighting of (4.4) for the case of equal intervals of t/2 takes
the form,

(WO, W1, W2) 8 4 ' + (4.24)(b1-a-b 1+a b)4.4
Algebraically, the proposed modification of Gill's method therefore translates to:

E° + bldj = l F 0 + + a [ J*(E°+ badj ), (4.25), j 4. 4 a d jJ
E 1+7badj = -, (4.26)El + 2 ~~~~~~~~~~~~~~~~~~(4.26)

E+ 3 WEE2 + WFF2 +(1 + aW + 2b) [F2 + j*(E 2 + adj)] (4.27)E2 ±+ ~P~adj = WEE24 adWFF2 -J (4.27)
Es+ p4d = 0.aE3+iP6dj = 0. (4.28)

In this case, we deduce from Table 2 that

E = __) F°-Fl+ 1+ F (4.29)
(2 2/ -

In order to conform to the weighting, (4.24), we first note that the terms F 1 and F 2 of (4.29)
are two approximations to the same central-time forcing, associated with the weight, W1, of
(4.24). The consistent definitions of WE and WF of (4.27) are then:

WE + 4b (4.30)
4

1-a3 vNbWF 4 + 8 (4.31)
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As in the case of the semi-implicit Williamson algorithm, we may put these equations into the

form in which only the adjustment terms appear on the left:

-adj = (1 - W~J*)-yWFO - E0, (4.32)

)2d = -El (4.33)

Padj -(1 - WJ*)-(WEE2 + W2F2 )-E 2, (4.34)

od4j -E 3 , (4.35)

where,
i

Wo1 2,1 (4.36)
2'

WI,= l+al (4.37)
4'

Wz = - (1 q- v2) bWE _ (= + V)b (4.38)
4

3 1 (i + ±V2)b8 '_ + (4.39)
2 8

W3- (1 +a3 +2b) (4.40)
4

As we did for the third-order scheme, we can test the implicit modifications of the fourth-

order Runge-Kutta scheme on the complex oscillator equation (2.1). Fig. 9 shows the stability

curve (dotted, and symmetric about the real axis) for the unaltered explicit fourth-order scheme.

The asymmetric curves roughly correspond to those shown in Fig. 4, as the implicit steps

are pure trapezoidal without de-centering. As before, the implicit modes lack the property of

robustness, which is only gained significantly for the faster implicit modes when b > 0, as shown

in Fig. 10 (where b = .5) and Fig. 11 (where b = 1). All modes are rendered robust by choosing

positive parameters a, as shown by Fig. 12 and, as with the Williamson modified scheme, a

compromise of robustness and formal accuracy is obtained with a smaller value of 0.2 for al and

a3 but a positive and b to guarantee the substantial robustness (or stronger damping) of the

faster modes, as we see from Fig. 13. However, as before, the value of having a non-vanishing

parameter b here is highly doubtful, especially in view of the significant simplifications to Eqs.

(4.38)-(4.40) we gain and the resulting greater uniformity of treatment of implicit terms during

both halves of the overall time stepping cycle when we choose b = 0.

The semi-implicit stages 2 and 4 for the Gill scheme look rather trivial but, in practice,

unless a spectral projection method is used, these stages will still necessitate solution of elliptic

equations. These now become equations of Poisson-type for the gravity or acoustic waves that

we would typically wish to treat implicitly. For the case of gravity modes, the implied con-

straints are essentially equivalent to geostrophy in the corrections made at these even-indexed

stages; for the case of acoustic modes, the implied constraints are essentially anelastic. In

practice, the long range of influence that such constraints imply become problematic for nu-

merical models spannning several processors of a massively-parallel computer. Because of such

practical considerations, we would prefer that, in addition to the form of numerical robustness
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we have described and discussed in the case of the semi-implicit Williamson modification, the
semi-implicit Gill schemes be robust to a 'dilution' of the adjustments applied to the slower
members of the designated 'fast' set of modes. That is, we desire that our schemes remain
stable when the actual adjustments adj are derived from the formal adjustments badj by a
dilution or under-relaxation:

~Padj = qVbadj' (4.41)

for some mode-dependent q < 1. Even without recourse to the spectral projection of the modes
concerned, it is possible to obtain such a q automatically by converting the original Poisson-type
equation to one of Helmholtz-type by the appropriate choice of Helmholtz coefficient (which
leaves the smallest scales essentially unaffected). In this way, the large-scale influence that is so
troublesome on a parallel computer is effectively eliminated. Of course, if we do have convenient
recourse to spectral projection, the dependence of dilution factor q on the modal frequency can
be engineered with considerable freedom.

The dilution of adjustments should only take effect for the slowest of the implicit members of
the family of modes (that is, large scale gravity modes in a hydrostatic model, large scale acous-
tic modes in a nonhydrostatic model). As we see from Fig 9, the stable region of the imaginary J
axis is actually more inclusive for the the unmodified (explicit) Runge-Kutta scheme than it is for
the modified (implicit) adaptation in the case of the slowest modes, so we might expect a dilution
of the adjustment at all stages to be beneficial. Fig. 14 shows a succession of neutral stability
curves for the single mode, J* = i, for the modified Gill scheme with parameters al = a3 = 0,
b = 1, (the scheme depicted in Fig. 11) for dilution factors, q E {1.0, 0.75, 0.5, 0.25, 0.}. The
scale of Re(J) is greatly expanded to facilitate visual discrimination of these curves relative to
the imaginary axis (the curve for q = 0, which implies the unmodified explicit scheme, is the
curve blending smoothly with the imaginary axis near the origin). We see from this sequence
that, with progressive dilution, the stable segment of the imaginary J axis first actually shrinks
slightly before it suddenly expands to the full span of the stable segment of the explicit scheme.
This strategy therefore does not have the intended consequence of recovering robustness for the
slower implicit modes for this particular modified scheme. The robustness for all modes that
is achieved with the choice of al = a3 = .5 but b = 0, illustrated in Fig. 12, is preserved undi-
minished for the mode J* = i when progressively diluted, as we see in Fig. 15 (which adopts
the same scale and format as Fig. 14). The dilution of the scheme, al = a3 = .2, b = .5, which
attempted to compromise between accuracy and robustness (see Fig. 13) slightly degrades the
robustness for all but the smallest dilution factors, q, as we see in Fig. 16, but probably not to
the extent of jeopardizing the scheme.

We have shown what the effects are of diluting the adjustments by a uniform factor at all
four stages but one of the reasons for considering this is to simulate the effect of converting the
Poisson-type equations (implied by the undiluted adjustments of stages 2 and 4) to Helmholtz-
type equations, so that the effective horizontal scale of influence of the terms that force these
adjustments is reduced to an extent that is more manageable numerically in a parallel imple-
mentation. It is therefore instructive to see the effect that the dilution has when applied only
to stages 2 and 4. The result, again for dilution factors progressing in intervals of 1/4, is shown
for the case al = a3 = .5 and b = 0 in Fig. 17. Here, it is the smaller values of q that begin to
encroach on the region of oscillatory stability of the scheme, but not to the extent of seriously
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degrading the overall robustness. However, we now lose the advantages of reverting to the

classical Runge-Kutta solution in the limit q -+ 0, especially the higher-order of accuracy, but

also the substantial robustness of the Runge-Kutta scheme as applied to the slowest modes.

5. DISCUSSION

The third-order and fourth-order Runge-Kutta schemes of Williamson (1980) and Gill (1951)

have been shown to be amenable to semi-implicit modifications that extend their applicability to

systems of equations that contain fast modes of no direct importance to the solution components

of interest. Such systems include the hydrostatic and nonhydrostatic systems of equations

employed by atmospheric forecasting and simulation models which have motivated this study,

but other application might include ocean models, and models of the upper-terrestrial or solar

atmospheres where electrical currents and their magnetic effects cannot be neglected.

Our study examined the robustness of several combinations of the first-order and second-

order de-centering parameters. On the basis of the results we obtained for the linear damped

oscillator equation, we cannot recommend attempting to achieve robustness using purely a

second-order de-centering (via parameter b alone, in our notation), as the robustness attained

falls far short of what is required for the slower members of the implicitly treated set of modes.

One 'remedy', which we have avoided here, would be to artificially augment the frequencies

of all the standard linearized implicit modes, that is, forcing our J* to be always significantly

larger than any actual effective J that could arise in the fully nonlinear system. For example,

in the context of an atmospheric model, whether for acoustic or gravity modes, this effect could

be accomplished by linearizing these modes about an artificial atmospheric basic state warmer

and more statically stable than any realistic state likely to be encountered in a simulation.

This is a device that is often used in semi-implicit atmospheric models, but we have avoided it

because the error incurred seems less amenable to formal evaluation and control than is the error

involved in our recommended remedy, which is to adopt a first-order decentering in time, using

parameters a > 0 in the notation of Section 4. When we recall that the modes requiring implicit

treatment are exclusively modes of characteristic time scales shorter than the time scales of

interest for the simulation, we can justify the severe distortion of these modes that the implicit

treatments imply. However, in recognizing that such modes occur in families, each spanning

a spectrum of characteristic frequencies whose range may straddle the boundary between the

'important' (slow) and 'unimportant' (fast) time scales, we pay some attention to the obligation

of avoiding the distortion of the evolution of the slower members of such a family more than

can be helped. For the gravity modes, this means projecting only the deepest vertical modes

for implicit treatment, as originally suggested by Burridge (1975). Among the deep subset of

the gravity modes this might also include attempting to dilute the implicit adjustments at the

largest horizontal scales (where frequencies become low enough to be stably resolved by the

explicit time integration) by, for example, artifically increasing the Helmholtz coefficient of the

Helmholtz elliptic problem beyond what is implied by a formal interpretation of the (undiluted)

semi-implicit adjustment steps. This would have the effect of reducing the horizontal range of

influence, especially in the case of the deepest family of modes (the Lamb modes). Likewise, for

the acoustic modes of a nonhydrostatic model, it is not necessary to treat those modes of large
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horizontal scales with a formally accurate representation of the horizontal part of the (three-
dimensional) Helmholtz operator, as long as the usually dominant vertical part is properly
dealt with; this allows the horizontal scale of influence in the treatment of these modes to
be made much smaller, probably with little discernable detriment to the overall solution, by
appropriately adjusting the Helmholtz coefficient in the elliptic problem or by directly diluting
the adjustment in the spectral domain when this becomes feasible.

One aim of this study has been to identify methods that are robust to both errors in
the modal frequencies (of the implicit modes) and to the effects of 'diluting' the implicit ad-
justment increments at the large scales (and hence, the slower modes) so that efficient, but
accurate, implementations on massively-parallel platforms can be achieved for complete three-
dimensional atmospheric models. In Part II of this study, we shall explore the practical aspects
of implementation of semi-implicit modifications to the Runge-Kutta schemes in Eulerian and
semi-Lagrangian nonlinear models. This will be done primarily in the context of the 'shallow
water' system, which is sufficient to elucidate most of the potential hazards involved in ap-
plications of semi-implicit techniques to realistic simulation models. But, using a multi-level
model, we shall also give consideration to some of the potential problems that can arise in
applying semi-implicit techniques to the acoustic modes of a nonhydrostatic model, especially
in the presence of non-trivial terrain. These more complete models will employ the first-order
de-centering option that seems, from this Part I of the study, to offer the best combination of
robustness and simplicity.
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APPENDIX A

One-step and Runge-Kutta schemes

The explicit schemes in this category involve a cycle of n stages and may be defined, for a
generic cycle of duration At as follows:

° = +(t), (A.1)
Fj = 'F(pb 3)st, (A.2)

j-1
-b

j - ° + E aj,iFt, j = 1, n, (A.3)
i=O

lp(t + at) = Vb. (A.4)

The subdivisions of Et at which the intermediate function evaluations occur are cjht, where,

j-1
cj= aj,i, (A.5)

i=O
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where cn = 1 always. A convenient tableau for defining the coefficients of, for example, a three-

stage scheme of this form, is:

C1 al,o

C2 a2,0 a2,1
(A.6)

a3,o a3,1 a3,2

For such a scheme to belong to the family of three-stage third-order Runge-Kutta methods,

Butcher (1987) shows that:

(A.7)

(A.8)

a3,0 + a3,1 + a3,2 = 1,

1
aa,lci + a3,2c2 =-

2 2 ~~1
a3,1c, + a3,2c~2 = ~,

1~a3,2a2t4cl =6 '
(A.9)

v

The two families of the N-cycle methods of Lorenz (1971) are defined as the special cases

of one-step methods in which the state at subsequent stages is constructed cumulatively by

schemes algebraically equivalent to:

VP = 03j-l +I~
n

E° = F°,

j = 1, n, (A.11)

(A.12)

where, for scheme 1:

F 3 - 1Ej n -Fj j Ej,n-3 n-3 j = 1, n - 1,

and, for scheme 2:

Ej =-Fj n_- Ejj,
3 j

j = 1, n - 1. (A.14)

The equivalent tableaux for the two 3-cycle schemes are:

1 1
3 3

2 1 1
_ 6 2

1 1

2 3 13 3

1 1 10 1
2 2 2

Both schemes fail to satisfy (A.9) (with equal and opposite errors) and are therefore not strictly

fully third-order accurate except in the case of a linear relationship between the 4 and the F.

The same limitations apply to all Lorenz N-cycle schemes for N > 2.

The schemes investigated by Williamson (1980) are the fully third-order schemes that are

possible by generalizing Lorenz's 3-cycle method to intermediate time levels that do not equally

subdivide the cycle, St. Apart from a few isolated degenerate cases, it can be shown, by a minor
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modification of the argument of Williamson, that these schemes all correspond to an algebraic
curve,

y2(1 X + x2 3 _X2O3Y2(1-X 4- -X3) + Y(-1 + 3X-X 2) + (-X + X2)= 0(A.15)
3 2

which is symmetric with respect to the interchange of X and Y, where,

X = 1/c1, (A.16)

Y = 1/(1-c 2), (A.17)

are the reciprocals of the first and third time subdivisions. Fig. 18 illustrates this curve,
together with a schematic depiction of a process for generating a two-way sequence of methods
possessing rational coefficients. The idea is that, since (A.15) has rational coefficients and is
separately quadratic in X and in Y, then, given any rational solution, S2p = (X2p, Y2p), there
is a related rational solution, S2p+1, possessing the same Y, and with X given by

3(2- 3Y2 + 2Y22)
X2p+l= 2(3 - 3Y 2 Y) - X2p (A.18)

Interchanging X and Y, the corresponding formula allows us to derive the rational scheme
S2p+2 from S2p+1, and so on. The natural starting point for the inductive construction is
S0 = (0, 0). However, this point, together with S1 = (0, 1) and S1-= (1, 0), do not translate
into meaningful integration schemes owing to the implied indeterminacies in the interval sub-
divisions. Less obviously, S3 _ (1/3,1/3) cannot be associated with any Runge-Kutta scheme
with finite coefficients, but the remaining members of the double-sided sequence correspond to
rational-coefficient low-storage Runge-Kutta schemes. This includes S4 (3, 4), which is the
recommended Williamson scheme. Its tableau is,

1 1
3 3

3 _3 15 (A.19)
4 16 16

1 3 8
6 10 15

Table 3 lists a few of the schemes in this sequence; while the sequence can be shown to
sample densely the locus of possible low-storage schemes shown in Fig. 18, the convenience of
having rational coefficients is offset by the fact that the rationals involved only possess small
integer numerators and denominators for the few members Sp with small IpI. If there is no
compelling reason to restrict oneself to such rational schemes, the unique scheme S for which
X = Y $ 0 becomes an attractive choice.

Expanding the terms in the algorithm of Table 1 and using (A.7)-(A.10) we find the coef-
ficients of the generic Williamson scheme, given c1 and c2, from:

3C2 - 2
a3,1 6 1( 2 -c)' (A.20)

2 - 3cl
a3,2 = 6c2(c2 - cl)' (A.21)
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TABLE 3. SOME LOW-STORAGE RK3 SCHEMES WITH RATIONAL COEFFICIENTS

Scheme Index used X Y c1 C2 Ro R1 R 2 Q1 Q2

by Williamson

S- 5 5 4 12 1 3 2 29
7 4 12 4 2.

S-4 6 4 3 1 2 1 8 3 17 -1
S- 4 6 43 ~~~~ 'd : 9 Z _

S~3 1 2 3 3 2 2 2 3 1 9 _4
2 3 3 3 4 3 8 9

S-2 ~4 3 2 o 2 3 1 1 - 2
2 3 3 4 3 2

S2 14 1 3 1 3 1 2 3 8 1
2 3 9 4 9 8

54 7 ~~~~~ 1 3 1 15 8 25 17~
S4 7 34 3 4 3 16 135 1- 25

S5 ... 7 4 12 4 67 S- -

/ A nn�

Ro = cl, kA.ZZ)

R2 = a3,2, (A.23)
1

R1 = Ro1 ' (A.24)

=-
Q C2 - C (A.25)

Ro

Q2= a3,1 (A.26)
R1

For the symmetric scheme, S, we find that

cl 0.28771294386878,

c2 ~ 0.71228705613122,

Ro 0.28771294386878,

R1 0.92457411226239,

R2 0.62653829327082,

:Q1 -0.5407895304104,

Q2 -1.1776506988040.

The tableau of coefficients generalizes in the obvious way for fourth-order schemes. The

classical fourth-order Runge-Kutta scheme is defined by its tableau,

1 1
2 2

°2 (A.27)

o o 1 

1 1 1 1
6 3 3 6
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For the Gill scheme, the corresponding coefficients are:

1 1
2 2

-~~~~~ -1~ 02~ ~ + 4 1 +-~~ 4(A.28)
1 -0 1: + 02f

6 3 (1 - 4) 3 1+ g

APPENDIX B

Delineation of stability boundaries for idealized complex oscillator equations

First, consider the case of the third-order Adams-Bashforth (AB3) scheme and suppose the
forcing F to be a linear function of the state 4', both being represented by complex magnitudes.
The complex frequency J is simply a constant of proportionality in the linear relationship,

F = JV,

while, for any single characteristic mode (physical or computational) of the AB3 scheme with
time step St, the state evolution obeys

'(t + mrt) = vm '(t), (B.1)

for the numerical complex frequency characterizing this mode. Clearly, the region of the plane
of parameter J corresponding to numerical stability also corresponds to where the values v do
not exceed unity in absolute magnitude. The stable region is therefore bounded by the curve,
or curves, where

v(J) = exp(iO), (B.2)

for real angles 0. Recalling the form of the AB3 scheme:

V'(t + at) = +(t) + 1 (23F(t) -16F(t - St) + 5F(t - 25t)) , (B.3)

the substitutions for a single mode lead immediately to

12 ~~~~~~~~~~~(B.4)vyb(t) = (l + J (23 -16/v + 5/L2)) +'(t). (B.4)

Therefore,
12v2 (V - 1)

J(O) = 23v 2 - 16v + 5' (B.5)

with (B.2) makes it possible to plot this bounding curve of J(0) as a function of all values
of 0 from 0 to 27r, as is done in Fig. 1. In a similar manner, the stability boundary for the
time-filtered leapfrog method of Fig. 1, which is also a multistep method, is easily obtained.
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For the classical fourth-order Runge-Kutta method defined by the tableau of (A.27) the

sequence of stages Vl,,... b4, expanded in terms of 4bO _ ,b(t) is:

= (1 + J/2)0°,
42 = (1 + J/2+ J 2/4)°0,
V)3 = (1 +J + J2/2 + J 3/4),

0(t+ 5t)4 -= (1 + J + J2/2 + J3/6 + J 4/24)b°.

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

In this case, solving for the critically stable J(0) when 4"4 = exp(i0)V)° entails finding the solution

of a quadratic for each value of 0. Standard polynomial root-finding software, such as is found in

Press et al. (1989), is used for this task. Achieving continuity of the plots of the four roots J(0)

as angle 0 makes a complete cycle requires careful selection of the appropriate permutation

of these roots at each consecutive evaluation. The Gill (1951) scheme, with the standard

tableau representation given by (A.28), leads to precisely the same final polynomial (B.10) as

the classical scheme (A.27). The corresponding polynomial for the Nth-order Runge-Kutta

scheme for N < 4 or for the general N-cycle schemes featured in Fig. 2 is the Nth-degree

Taylor series approximation to the function exp(J), giving N independent complex roots. The

semi-implicit adaptations we have described alter the polynomial coefficients but, except in

degenerate limiting cases, not the degree. The same root-finding and permutation-matching

procedure therefore allows us to construct the stability boundaries we show in the other figures

of this paper.
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Figure 1. Stability regions in the complex JRt plane of the filtered leapfrog, the third-order Adams-Bashforth,
and the fourth-order Runge-Kutta schemes, all adjusted to possess the same average frequency of tendency

function evaluations.
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Figure 2. Stability regions in the complex Jbt plane of the N-cycle Runge-Kutta schemes up to N = 5, all

adjusted to possess the same average frequency of tendency function evaluations.
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(a) Reference solution, inverse-square law

(C) Lorenz 4-cycle scheme 1 (d) Lorenz 4-cycle scheme 2

\M / <~~~~~
Figure 3. Numerical solution of the inverse-square force law problem, for approximately 10 circular orbits and
314 time-stepping cycles, comparing the classical 4th-order Runge-Kutta scheme with the two Lorenz 4-cycle
methods. The true phase at the end of the period of integration is shown by the outer tick, the numerical phase

for each scheme is indicated by the inner tick.
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(b) Classical 4th-order RK scheme
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Figure 4. Stability regions (interiors of closed curves) in the complex plane of J6t for the explicit third-order
Runge-Kutta scheme (the dotted curve that is symmetric about the real-axis) together with the stability curves
for the semi-implicit modification of Williamson's scheme at assumed frequencies, J* = i, 3i, 5i for the parameter
choice, al = a2 = a3 = b = 0. J is the true complex frequency of the mode. The curves for the implicit modified
scheme all pass precisely through the respective complex values of J*, implying that the fast oscillatory modes are
exactly neutrally stable when J* = J, but are unstable for the smallest underestimation, J* < J, which implies

a lack of numerical robustness.
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Figure 5. Stability regions in the J plane for the semi-implicit modified Williamson scheme for JP = i, 3, 5i
when al = a2= as = 0. but with the second-order de-centering parameter, b = .5. For the higher frequencies
(larger loops), a degree of robustness is obtained, since the curve of neutral stability misses the point J = J by
a significant marging, but this margin is not significant at smaller frequencies (e.g., for the curve for J* = i).
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Figure 6. Modified Williamson scheme, as in Fig. 5, but for a larger de-centering parameter, b = 1. The lower
frequency implicit modes still lack robustness.
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Figure 7. Modified Williamson scheme, as in Fig. 5, but with ai = a2 = a3 =.5 and b = 0.. All implicit
are now robustly stable.
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Figure 8. Modified Williamson scheme, as in Fig. 5, but with al = a2 = as = .2 and b = .5. The small first-order
de-centering parameters a provide some robustness for the lower frequencies while the b parameter provides a

more generous safety margin for the higher frequencies.
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Figure 9. Stability regions as in Fig. 4, but for the explicit fourth-order Runge-Kutta scheme (the dotted curve
that is symmetric about the real-axis) together with the stability curves for the semi-implicit modification of
Gill's scheme at assumed frequencies, J* = i, 3i, 5i for the parameter choice, al = a3 = b = 0. As in the case
of the modified Williamson scheme, whose stability curves are shown in Fig. 4, the implicit scheme's stability
bounds all pass precisely through the respective complex values of J*, implying an inherent lack of robustness

at all frequencies.
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Figure 10. Stability regions in the J plane for the semi-implicit modified Gill scheme for J* = i, 3i, 5i when
al = a3 = 0. but with the second-order de-centering parameter, b = .5. As with the corresponding modified
Williamson scheme of Fig. 5, the higher frequencies (larger loops) are robust but the lower frequencies much less

so.
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Figure 11. As in Fig. 10, but with b = 1.
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Figure 12. As in Fig. 10, but with al = a3 = .5 and b = 0.
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Figure 13. As in Fig. 10, but with al = a = .2 and b = .5
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Figure 14. Stability boundaries for the modified Gill scheme with al = a3 = 0. and b = 1. but with the adjust-
ment terms successively diluted by factors, q = 1., .75, .5, .25, 0. The curve for the case, q = 0, reverts to the
stability curve for the explicit Runge-Kutta method. Note that the scale for the real axis is magnified more than
the scale for the imaginary axis in order to better discriminate the-stable and unstable regions of the imaginary

J axis.
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Figure 15. As in Fig. 14, but with al = a3 .5 and b = 0., i.e., the diluted form of the scheme shown in Fig. 12
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Figure 16. As in Fig. 14, but with al = a3= .2 and b = .5, i.e., the diluted form of the scheme shown in Fig. 13

38



3.0

I

3/4
1/2

q= 14114

2.0

0

-. 15 -.10 -. 05 .05 .10
Re(J) >

Figure 17. Stability curves for the modifies Gill scheme with al = a3 = .5 and b = 0, but with dilution factors q
only applied to the adjustments of stages 2 and 4.
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Figure 18. Locus of parameters, X = 1/cl and Y = 1/(1 - c2), of third-order Runge-Kutta schemes for which
a low-storage implementation is possible. Some of the schemes with simple rational coefficients are included,
together with a graphical depiction of the process which generates them as a double-sided sequence. The method

recommended by Williamson corresponds to the scheme listed here as 'S 4
'.
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